Trigonometric Ratios of Complementary Angles 

Important identities:

1. sin(90 – θ) = cosθ

2. cos(90-θ) = sinθ

3. tan(90-θ) = cotθ

4. cot(90-θ) = secθ

5. sec(90-θ) = cosecθ

6. cosec(90-θ) = secθ

Q.1 Evaluate the following:

(i) sin18°/cos72°

Solution:

sin18°/cos72°

= sin( 90°- 72° )/cos72°   [ sin(90-θ) = cosθ ]

= cos 72° / cos 72°

= 1

(ii) sin 26°/cos 64°

Solution:

sin 26°/cos 64°

= sin ( 90° – 64°)/cos 64°

= cos 64° / cos 64°

= 1

(iii) cos 48° – sin 42°

Solution:

cos 48° – sin 42°

= cos ( 90° – 42° ) – sin 42° [ cos ( 90° – θ ) = sin θ ]

= sin 42° -sin 42°

= 0

(iv) cosec 31° – sec 59°

Solution:

cosec 31° – sec 59°

= cosec (90° – 59°) – sec 59° [ cosec (90° – θ)= sec θ

= sec 59° – sec 59°

= 0

2. Show that:

(i) tan 48°tan 23°tan 42° tan 67° = 1

Solution:

tan 48°tan 23°tan 42° tan 67° = 1

L.H.S. = tan 48°tan 23°tan 42° tan 67°

⇒ L.H.S. = tan (90° – 42°) tan(90° – 67°) tan 42° tan 67°

⇒ L.H.S. = cot 42° cot 67° tan 42° tan 67°[ tan(90° – θ)= cotθ ]

⇒ L.H.S. = cot 42° tan 42° cot 67° tan 67° [ tanθ cotθ = 1 ]

⇒ L.H.S. = 1

⇒ L.H.S. = R.H.S                             ( Hence Proved )

(ii) cos 38° cos 52° – sin 38° sin 52° = 0  

Solution:

L.H.S. = cos 38° cos 52° – sin 38° sin 52°

⇒ L.H.S. = cos (90°-52°) cos 52° – sin ( 90° – 52°) sin 52°

⇒ L.H.S. = sin 52° cos 52° – cos 52° sin 52°

⇒ L.H.S. = 0

⇒ L.H.S. = R.H.S.    (Hence Proved)

Q.3. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.

Given:

tan 2A = cot (A -18°)

2A < 90°

To Find:

Value of A =?

Solution:

tan 2A = cot (A -18°)

We know that  cot (90° – θ) = tan θ

⇒ cot(90° – 2A) = cot (A -18°)

⇒  90° – 2A = A -18°

⇒ – 2A – A = -18° – 90°

⇒ – 3A  = -108°

⇒ A  = -108°/-3

⇒ A  = 36°

justification

2A < 90°

2×36° < 90°

⇒ 72° < 90°

Hence  Value of A = 36°

Q.4 If tan A = cot B, Prove that A + B = 90°.

Given:

tan A = cot B

To Prove:

A + B = 90°

Proof:

tan A = cot B

tan A = tan (90° – B) [ tan (90° – θ) = cot θ]

⇒ A = 90° – B

⇒ A + B = 90°                                 Hence Proved

Q.5 If sec 4A = cosec (A – 20º), where 4A is an acute angle, find the value of A.

Given:

sec 4A = cosec (A – 20°)

4A < 90°

To Find:

Value of A =?

Solution:

sec 4A = cosec (A – 20°)

⇒ cosec(90°- 4A) = cosec (A – 20°)    [ cosec(90° – θ) = secθ ]

90° – 4A = A – 20°

⇒ -4A -A = -20° – 90°

⇒ -5A = -110º

⇒ A = -110°/-5

⇒ A = 22°

Justification: 

4A < 90°

⇒ 4×22° < 90°

⇒ 88° < 90°

Hence the value of A = 22°

Q.6 If A, B, and C are interior angles of a triangle ABC , then show that: 

sin ( B+C /2 ) = cos A/2.

Given:

In triangle ABC

A, B and C are interior angles

To Show:

sin ( B+C /2 ) = cos A/2

Proof:

We know that the sum of all interior angles of triangle is 180°

A + B + C = 180°

⇒ B + C = 180° – A

⇒ (B + C)/2 = (180° – A)/2

⇒ (B + C)/2 = 180º/2 – A/2

⇒ (B + C)/2 = 90° – A/2

⇒ sin(B+C /2) = sin(90° – A/2)

⇒ sin(B+C /2) = cos A/2   [ sin(90° – θ) = cosθ ]

Q.7 Express sin 67° + cos 75º in terms of trigonometric ratios of angles between 0° and 45° .

Solution:

sin 67° + cos 75º

⇒ sin (90° – 23°) + cos (90° – 15°)

{ we know that sin (90° – θ) = cosθ and cos (90° – θ) = sin θ }

⇒ cos 23° + sin 15°

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *