What is the trigonometry ratios table?
It is a type of table by this table we can find out the value of some specific angles like 0º,30º,45°,60°and 90º. So it is essential that you know how to make this table, here I am going to explain this table in a very easy manner here I have also solved ncert class 10 trigonometry exercise 8.2 in a very simple way.
0º (√o) | 30º(√1/4) | 45º(√1/2) | 60º(√3/4) | 90º√1 | |||
sinθ | 0 | 1/2 | 1/√2 | √3/2 | 1 | square root of numbers | |
cosθ | 1 | √3/2 | 1/√2 | 1/2 | 0 | reverse order of sinθ | |
tanθ | 0 | 1/√3 | 1 | √3 | ∞ | sinθ/cosθ | |
cotθ | ∞ | √3 | 1 | 1/√3 | 0 | reverse order of tanθ | |
secθ | 1 | 2/√3 | √2/1 | 2 | ∞ | reciprocal of cosθ | |
cosecθ | ∞ | 2 | √2/1 | 2/√3 | 1 | reverse order of cosθ |
Q.1) Evaluate the following :
(i) sin60ºcos30º+sin30ºcos60º
= √3/2×√3/2+ 1/2 ×1/2 [put the value of all trigonometric ratios with the help of the table]
= 3/4 + 1/4
= 4/4
= 1
(ii) 2tan245º + cos230º – sin260º
solution:
2tan245º + cos230º – sin260º
= 2(1)2+(√3/2)2-(√3/2)2
= 2×1 + 3/4 – 3/4
= 2
(iii) cos45º/sec30º+cosec30º
solution:
cos45º/sec30º+cosec30º
= (1/√2)/( 2/√3)+2
= (1/√2)/[(2+2√3)/√3]
= (1/√2)×√3/2+2√3
= √3/(2+2√3)
= √3/2(1+√3)
= √3/2(√3+1)
= √3/2√2(√3+1) × √2/√2 {Rationalization of root 2}
= √6/2×2(√3+1)
= √6/4(√3+1) ×(√3-1)/(√3-1) {Rationalization of √3+1 }
=√6(√3-1)/4(3-1) [(a+b)(a-b) = a2 – b2]
= √18-√6/4×2
= {√(2×3×3) – √6}/8
= {3√2 – √6}/8
(iv) sin30º+tan45º- cosec60º / sec30º+cos60º + cot45º
solution:
sin30º+tan45º- cosec60º / sec30º+cos60º + cot45º
= ( 1/2)+1- 2/√3 / [2/√3 + 1/2 + 1]
= [(√3 +2√3 -4)/2√3 ] / [(4+√3 +2√3)/2√3 ]
= [(3√3 -4)/2√3 ] / [(4+3√3 )/2√3 ]
= 3√3 -4/ 4+3√3
= 3√3 -4/ 3√3 +4 [Rationalise the denominator]
= 3√3 -4 / 3√3 +4 × 3√3 -4 / 3√3 -4 [ (a+b)(a-b)=a2-b2 ]
= ( 3√3 -4 )2 / (3√3)2-(4)2
= (3√3)2 -2×3√3×4 +(4)2 / 9×3 – 16
= [9×3 -24√3+16] / 27-16
= [27-24√3+16] / 11
= 43-24√3 / 11
(v) 5cos260º + 4sec230º- tan245º / sin230º + cos230º
solution:
5cos260º + 4sec230º- tan245º / sin230º + cos230º
= 5(1/2)2 + 4( 2/√3)2– ( 1)2 / (1/2)2 + (√3/2)2
= [5×1/4 + 4×4/3 – 1 ] / (1/4 + 3/4)
= [5/4 + 16/3 – 1] / (4/4)
= [(15+64-12)/12 ] / (1)
= [(79-12)/12]
= [(67/12)]
= 67/12
Q2.) Choose the correct option and justify your choice :
(i) 2 tan30º / 1 + tan²30 =
(A) sin60º (B) 1 (C) sin45º (D) sin30º
Explaination:
2 tan30º / 1 + tan²30
= 2×(1/√3) / 1+ (1/√3)²
= 2/√3 / 1+1/3
= 2/√3 ÷ 4/3
= (2 /√3) ×3/4
= 2×3/√3 ×4
= √3×√3 / 2√3
= √3/2
= sin60º
Ans ( A)
(ii) 1-tan²45º /1+tan²45º
Solution:
1-tan²45º /1+tan²45º
= 1-(1)² / 1+(1)²
=1-1/1+1
=0/2
=0
Ans(D) 0
(iii) sin 2A = 2 sinA is true when A =
(A) 0° (B) 30º (C) 45° (D) 60°
Explaination:
put A = 0º
sin 2×0º = 2 sin0º
sin 0º = 2sin0º
=> 0 = 2×0
=> 0 = 0
=> LHS = RHS
Ans (A) 0º
(iv) 2 tan30º / 1-tan²30º =
(A) cos 60º (B) sin 60º (C) tan60º (D) sin 30º
Explaination:
2 tan30º / 1-tan²30º
= 2×(1/√3) / 1- (1/√3)²
= (2/√3 ) / 1 – (1/3)
= (2/√3 ) / (3- 1)/3
= (2/√3 )/(2/3)
= (2/√3) ×( 3/2)
= 2×3/2√3
= 3/√3
= √3
= tan60º
Ans(C) tan60º
Q3.) If tan ( A+B )= √3 and tan(A – B) =1/√3; 0º< A+B≤90º; A>B , find A and B.
Given:
tan ( A+B )= √3;
tan(A – B) =1/√3;
0º< A+B≤90º; A>B
To Find:
A=?
B=?
Solution:
tan ( A+B )= √3
=>tan ( A+B )= tan60º
=> A+B=60º …………….(i)
tan(A – B) =1/√3
=> tan(A – B) = tan 30º
=>A – B = 30º ……………….(ii)
Adding Equation(i) and Equation (ii)
A+B + A-B=60º +30º
=> 2A = 90º
=> A = 90º/2
=> A = 45 [put into Equation (i)]
45 + B = 60º
=> B = 60º-45º
=> B = 15º
Justification
0º< A+B ≤90º
0º< 45º+15º ≤90º
0º< 60º ≤ 90º and
A > B
=> 45º > 15º
Hence
A = 45º And B = 15º
your solution very easy thak you sir